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Abstract
An algebraic technique useful in studying non-Hermitian Hamiltonians with
real spectra, is presented. The method is illustrated by explicit application to a
family of one-dimensional potentials.

PACS numbers: 02.20.Sv, 03.65.Fd, 03.65.−w

1. Introduction

The existence of non-Hermitian Hamiltonians with real spectra is one of the interesting
problems in theoretical physics [1–16]. Firstly, they are used in various branches of theoretical
physics, and secondly, for others it is interesting in itself to understand the reasons for the
reality ( see, e.g., [17] and references therein).

The understanding of non-Hermitian Hamiltonians H with real spectra has been largely
improved since the work of Bender and Boettcher [1] by the realization that their existence
is deeply related to the existence of symmetry under the combined transformation of parity P
and time reversal T,

HPT = PT H. (1)

Later, Mostafazadeh [18] has shown that the operator H acting in a Hilbert space H has a real
spectrum if there exists a Hermitian automorphism η : H → H such that

H †η = ηH (2)

or

HO = OH0, (3)

where OO† = η and H0 is Hermitian.
In a recent paper, however, Kretschmer and Szymanowski [19] proposed a way which

might allow for finding in a systematic way large classes of non-Hermitian Hamiltonians
with real spectra. The existence of an operator � that intertwines a given non-Hermitian
Hamiltonian H acting in H and a Hermitian one h acting in L2 ensures the reality of the
spectrum of H,

H� = �h. (4)

We would like to emphasize that � is an operator from L2 to H, whereas O acts in H.
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In this paper, we present a technique to construct the class of non-Hermitian Hamiltonians
H related to Lie groups G. The key to the construction of H lies in the observation that the
relation (4) for such systems is essentially a relation between equivalent representations of
G. This suggests the following assumption that the operators H and h must be related to the
different realizations of a non-unitary representation of G. Our treatment is based on this chief
assumption.

2. Non-Hermitian Hamiltonians with real spectra: a case study for SO(2, 1)

To gain a better understanding of our approach, we illustrate it for Hamiltonians related to
SO(2, 1). To this end, a few facts from the representation theory of SO(2, 1) are useful
[20, 21].

Let R2,1 be a three-dimensional pseudo-Euclidean space with bilinear form

[ξ, ζ ] = ξ0ζ0 − ξ1ζ1 − ξ2ζ2. (5)

By SO(2, 1) we denote the connected component of the group of linear transformations of
R2,1 preserving the form (5). We consider SO(2, 1) as acting on R2,1 on the right.

Let us choose in SO(2, 1) the one-parameter subgroups {g0(t)}, {g1(t)} and {g2(t)}, where
g0(t) is the rotation in the 1–2 plane

g0(t) =
⎛
⎝1 0 0

0 cos t sin t

0 − sin t cos t

⎞
⎠ , (6)

while g1(t) and g2(t) are the pure Lorentz transformations along the 1 and 2 axes

g1(t) =
⎛
⎝cosh t sinh t 0

sinh t cosh t 0
0 0 1

⎞
⎠ , g2(t) =

⎛
⎝cosh t 0 sinh t

0 1 0
sinh t 0 cosh t

⎞
⎠ . (7)

The tangent matrices ai = dgi (t)

dt

∣∣
t=0 form a basis of the Lie algebra of SO(2, 1) with

commutation relations

[a1, a2]− = −a0, [a2, a0]− = a1, [a0, a1]− = a2. (8)

The unitary irreducible representations (UIRs) of SO(2, 1) are known to form three series
[20, 21]: principal, supplementary and discrete. It is also known that any UIR of SO(2, 1)

is equivalent to some sub-representation of an elementary representation of SO(2, 1). They
occur as unitarizations of elementary representations or as unitarizations of quotients of such
representations.

Let us recall some facts about the elementary representations of SO(2, 1). The elementary
representations Tσ of the group SO(2, 1) are labelled by a complex number σ . They can be
realized in the Hilbert space L2(S) with inner product

(f1, f2) = 1

2π

∫
S

f ∗
1 (n)f2(n) dn, (9)

where S = {n = (1, cos ϕ, sin ϕ)} denotes the circle of radius 1 and dn = dϕ. The
representation Tσ is defined by

Tσ (g)f (n) = |(ng)0|σ f

(
ng

(ng)0

)
. (10)

where (ng)0 is the zero component of the vector ng, i.e.,

(ng)0 = g00 + n1g10 + n2g20. (11)
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The infinitesimal operators Ai = (d/dt)Tσ (gi(t))|t=0, i = 0, 1, 2, of the representation Tσ ,
corresponding to the one-parameter subgroups gi(t) are given by

A1 = σ cos ϕ − sin ϕ
d

dϕ

A2 = −σ sin ϕ − cos ϕ
d

dϕ

A3 = d

dϕ
.

(12)

The Casimir operator

C = A2
1 + A2

2 − A2
0 (13)

is identically a multiple of the unit

C = σ(σ + 1)I. (14)

It can be shown that

(Tσf1, T−σ ∗−1f2) = (f1, f2). (15)

Therefore, the representation Tσ is unitary if Re σ = − 1
2 . In this case the infinitesimal

operators (12) satisfy the condition

A
†
i = −Ai, i = 0, 1, 2, (16)

i.e. the operators

Jk = −iAk, k = 0, 1, 2 (17)

are Hermitian. For Re σ �= − 1
2 the representation Tσ is non-unitary (with respect to the inner

product (9)) although J3 is still Hermitian. If we diagonalize J3 we obtain

J3ψm = mψm, Cψm = −σ(σ + 1)ψm, m = 0,±1,±2, . . . , (18)

with ψm(ϕ) = exp(imϕ).
In order to avoid misunderstanding, we must make a few comments on the operator

Tσ (g) in (6). As was pointed out above, the representation just described gives three series
of unitarizable representations of SO(2, 1). If Re σ = − 1

2 then the representation Tσ (g) is
unitary and these representations form the principal series of SO(2, 1). It turns out that when
−1/2 < σ < 0 or σ = −1,−2,−3, . . . , the operator Tσ (g) is unitary with respect to an
inner product which is different from (9). These representations form the complementary and
discrete series of SO(2, 1), respectively.

A key concept in group-theoretical approach is that the Hamiltonian H under study is a
function of infinitesimal operators Ai of the representation of some Lie group G,

H = 	(Ai). (19)

Here we want to construct a non-Hermitian Hamiltonian H intertwined with the Hermitian
operator h. (The operator h is not necessarily a Hamiltonian for some physical problem, but a
Hermitian operator in L2.) As was mentioned in the introduction, the key to their construction
lies in the observation that the relation (4) is essentially an equivalence relation between two
representations of G. Therefore, we should look for another realization of the elementary
representation and introduce the intertwining operator.

Let us denote by Hσ the space of functions F(ξ) on one sheet hyperboloid 
,

ξ 2
0 − ξ 2

1 − ξ 2
2 = −1, (20)
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satisfying the equation

� F(ξ) = σ(σ + 1)F (ξ), σ ∈ C, (21)

where

� = − ∂2

∂ξ 2
1

− ∂2

∂ξ 2
2

+ ∧(∧ + 1), ∧ = ξ1
∂

∂ξ1
+ ξ2

∂

∂ξ2
(22)

is the Laplace–Beltrami operator on 
. Here, we have assumed ξ1 and ξ2 as the independent
variables on 
. The inner product in Hσ is defined by

(F1, F2) =
∫




F ∗
1 (ξ)F2(ξ) dξ, (23)

where dξ = dξ1 dξ2/ |ξ0| is an invariant measure on 
. Then the elementary representation of
SO(2, 1) can be realized in Hσ . In this realization the representation is defined by

UσF(ξ) = F(ξg). (24)

The interrelation between representations (10) and (24) is given by

F(ξ) =
∫

S

|[ξ, n]|−1−σ f (n) dn

≡ (Wf )(ξ). (25)

We are now prepared to construct a one-dimensional non-Hermitian Hamiltonian H

H = − d2

dx2
+ V (x) (26)

intertwined with the Hermitian operator h

h ≡ J 2
3 = − d2

dϕ2
.

(We suppose that H is subject to the representation Uσ .) For this purpose instead of the
coordinates ξ1 and ξ2 we introduce the coordinates x and θ via

ξ1 = cos θ√
1 − z(x)2

, ξ2 = sin θ√
1 − z(x)2

, z(x) ∈ [−1, 1]. (27)

Then from (4) it follows that

F(x, θ) =
∫ 2π

0

∣∣∣∣∣ z(x)√
1 − z(x)2

− cos(ϕ − θ)√
1 − z(x)2

∣∣∣∣∣
−1−σ

f (ϕ) dϕ. (28)

Further, putting θ = 0 we have

F(x) =
∫ 2π

0
k(x, ϕ)f (ϕ) dϕ

≡ (�f )(x), (29)

where

k(x, ϕ) =
∣∣∣∣∣ z(x)√

1 − z(x)2
− cos ϕ√

1 − z(x)2

∣∣∣∣∣
−1−σ

.

(For the sake of simplicity the restriction of a function F on the line θ = 0 is denoted by the
same symbol F.)
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According to equation (4) the non-Hermitian Hamiltonian H can be derived by demanding
that, for any f ∈ L2

H�f = �hf

or more explicitly∫ 2π

0
Hk(x, ϕ)f (ϕ) dϕ =

∫ 2π

0
k(x, ϕ)hf (ϕ) dϕ. (30)

It follows from here that

Hk(x, ϕ) = hk(x, ϕ). (31)

The proof needs to be given only for ψm (ϕ) = exp (imϕ) because the functions ψm form a
basis in L2. Using integration by parts we see immediately that∫ 2π

0
k(x, ϕ)h eimϕ dϕ =

∫ 2π

0
[hk(x, ϕ)] eimϕ dϕ.

Hence the equation∫ 2π

0
Hk(x, ϕ) eimϕ dϕ =

∫ 2π

0
k(x, ϕ)h eimϕ dϕ (32)

can be reduced to the form∫ 2π

0
Hk(x, ϕ) eimϕ dϕ =

∫ 2π

0
[hk(x, ϕ)] eimϕ dϕ,

which yields equation (31).
So, the requirement that a non-Hermitian Hamiltonian H is intertwined by the Hermitian

operator h implies the fulfilment of equality (31). Then, it is not difficult to see that this
equality is satisfied if

V (x) = σ(σ + 1)

1 − z2
, (33)

provided

ż2

1 − z2
= 1. (34)

The solutions to the last equation are

z(x) = cos x, 0 < x < π (35)

and

z(x) = sin x, −π/2 < x < π/2. (36)

If we compute V (x) for z(x) = cos x it becomes

V (x) = σ(σ + 1)

sin2 x
. (37)

Hence, the spectrum of the non-Hermitian Hamiltonian

H = − d2

dx2
+

σ(σ + 1)

sin2 x
(38)

is real.
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We note that, the intertwined operators are isospectral. Particularly, if ψm is the
eigenfunction of h with eigenvalue m then m = �ψm is an eigenfunction of H with the
same eigenvalue. So the functions

m(x) =
∫ ∣∣∣cot x − cos ϕ

sin x

∣∣∣−1−σ

eimϕ dϕ,

which are not necessarily square integrable, are the eigenfunctions of the Schrödinger equation
with Scarf potential [22–24].

Another example is provided by Hamiltonian of the form

H = − d2

dx2
+

σ(σ + 1)

cos2 x
, (39)

which is obtained by substituting

z(x) = sin x, −π/2 < x < π/2. (40)

In this case

m(x) =
∫ ∣∣∣tan x − cos ϕ

cos x

∣∣∣−1−σ

eimϕ dϕ (41)

It is worth pointing out that these potentials can be also derived algebraically by relating
the non-Hermitian Hamiltonians H to Casimir operator C of the representation Uσ as

Q(H − E) = [C − σ(σ + 1)]|H (42)

where Q is some nontrivial operator and H is an eigensubspace of the compact generator.
Historically this method was introduced by Ghirardi [25]. (It should be noted that the potential
group approach initiated in [26] is a rediscovery of the technique attributable to Ghirardi.)

If we compute the infinitesimal operators of Uσ corresponding to the one-parameter
subgroups gi(t), i = 0, 1, 2, they become

A0 = ξ2
∂

∂ξ1
− ξ1

∂

∂ξ2
, A1 = ξ0

∂

∂ξ1
, A2 = ξ0

∂

∂ξ2
,

while the Casimir operator C coincides with the Laplace–Beltrami operator on 
, i.e., C = �.
Then the Casimir operator C in the parametrization (27) is given by

C = (1 − z2)2

ż2

[
∂2

∂x2
−

(
zż

1 − z2
+

z̈

ż

)
∂

∂x
− ż2

1 − z2

∂2

∂θ2

]
, (43)

where dots represent derivatives with respect to x, i.e., ż = dz
dx

, etc.
In order to eliminate the term containing the first derivative we make a similarity

transformation

A′
i = h−1/2 ◦ Ai ◦ h1/2, i = 0, 1, 2,

where h = h(x) = ż/(1 − z2)1/2 and ◦ denotes composition of operators. Then the Casimir
operator C transforms into

C ′ = h−1/2 ◦ C ◦ h1/2

= (1 − z2)2

ż2

[
∂2

∂x2
+

1

2

. . .
z

ż
− 3

4

(
z̈

ż

)2

+ ż2 2 + z2

4(1 − z2)2
− ż2

1 − z2

∂2

∂θ2

]
,

while A′
0 = A0 = − ∂

∂θ
.
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Let us denote by C ′
m a restriction of C ′ on a one-dimensional subspace Hm spanned by

function F ′
m(ξ) =  ′

m(x) eimθ with fixed m. Then C ′
m becomes a differential operator in x

alone; it is found that

C ′
m = (1 − z2)2

ż2

[
d2

dx2
+

1

2

. . .
z

ż
− 3

4

(
z̈

ż

)2

+ ż2 2 + z2

4(1 − z2)2
− m2ż2

1 − z2

]
. (44)

We now allow the eigenvalues of the Casimir operators of SO(2) and of SO(2, 1) to be linear
functions of the energy E, i.e.,

m2 = γ1E + δ1 (45)

and

σ(σ + 1) = γ2E + δ2. (46)

On the conditions given above, we have

C ′
m − σ (σ + 1) = −

(
1 − z2

ż

)2
[
− d2

dx2
− 1

2

. . .
z

ż
+

3

4

(
z̈

ż

)2

+ ż2 ER (z) + δ1(1 − z2) − δ2

(1 − z2)2

]
, (47)

where

R (z) = γ1(1 − z2) − γ2. (48)

This equation is easily reduced to the form (42) with

H = − d2

dx2
− δ1(1 − z2) − δ2

R
−

(
1 + 2z2

2
+

5γ2

4R
z2

)
γ2

R
(49)

and

Q = −
(

1 − z2

ż

)2

(50)

provided that

ż2 = (1 − z2)2

R(z)
. (51)

The Hamiltonians (49) include as a special case the above-mentioned class of non-Hermitian
Hamiltonians with real spectra. Indeed, putting γ1 = 1, γ2 = 0 and δ1 = 0 equations (49) and
(51) reduce to

H = − d2

dx2
+

δ2

1 − z2
, ż2 = 1 − z2,

with δ2 = σ(σ + 1) and E = m2.

3. Conclusion

In this paper, we have shown how an intertwining operator between two non-unitary
representations of a group G can be used to obtain a class of non-Hermitian Hamiltonians
with real spectra. We illustrated the method by choosing G to be SO(2, 1), which led to
Scarf potentials. The question then arises: how does one obtain other potentials within the
framework of this approach? There are two possibilities. The first is to use other Lie groups.
We note that it is quite natural to generalize the representations Tσ and Uσ for SO(p, q).
The second is to use other non-unitary representations of an underlying Lie group. These
possibilities will be considered in a forthcoming publication.
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